In differential geometry, the Kosmann lift,[1][2] named after Yvette Kosmann-Schwarzbach, of a vector field on a Riemannian manifold is the canonical projection on the orthonormal frame bundle of its natural lift defined on the bundle of linear frames.[3]
Generalisations exist for any given reductive G-structure.
Contents |
In general, given a subbundle of a fiber bundle over and a vector field on , its restriction to is a vector field "along" not on (i.e., tangent to) . If one denotes by the canonical embedding, then is a section of the pullback bundle , where
and is the tangent bundle of the fiber bundle . Let us assume that we are given a Kosmann decomposition of the pullback bundle , such that
i.e., at each one has where is a vector subspace of and we assume to be a vector bundle over , called the transversal bundle of the Kosmann decomposition. It follows that the restriction to splits into a tangent vector field on and a transverse vector field being a section of the vector bundle
Let be the oriented orthonormal frame bundle of an oriented -dimensional Riemannian manifold with given metric . This is a principal -subbundle of , the tangent frame bundle of linear frames over with structure group . By definition, one may say that we are given with a classical reductive -structure. The special orthogonal group is a reductive Lie subgroup of . In fact, there exists a direct sum decomposition , where is the Lie algebra of , is the Lie algebra of , and is the -invariant vector subspace of symmetric matrices, i.e. for all
Let be the canonical embedding.
One then can prove that there exists a canonical Kosmann decomposition of the pullback bundle such that
i.e., at each one has being the fiber over of the subbundle of . Here, is the vertical subbundle of and at each the fiber is isomorphic to the vector space of symmetric matrices .
From the above canonical and equivariant decomposition, it follows that the restriction of an -invariant vector field on to splits into a -invariant vector field on , called the Kosmann vector field associated with , and a transverse vector field .
In particular, for a generic vector field on the base manifold , it follows that the restriction to of its natural lift onto splits into a -invariant vector field on , called the Kosmann lift of , and a transverse vector field called the von Göden lift of